S = 1.070	Extinction correction:
1709 reflections	SHELXL93 (Sheldrick,
94 parameters	1993)
H-atom parameters	Extinction coefficient:
constrained	0.033 (2)
$w = 1/[\sigma^2(F_o^2) + (0.0303P)^2]$	Scattering factors from
+ 0.3539 <i>P</i>]	International Tables for
where $P = (F_o^2 + 2F_c^2)/3$	Crystallography (Vol. C)

Table 1. Selected geometric parameters (Å, °)

S1—O2	1.4249 (11)	S2—O4	1.4272 (10)
S1—01	1.4272 (11)	S2N	1.6992 (12)
S1—N	1.7260 (11)	S2C2	1.7505 (15)
S1-C1	1.7531 (15)	CIN	1.7138 (11)
S2—O3	1.4251 (11)		
O2—S1—O1	119.52 (7)	O4—S2—N	103.43 (6)
02-S1-N	105.16 (6)	O3—S2—C2	110.27 (7)
01-S1-N	108.61 (6)	O4—S2—C2	110.42 (7)
O2—S1—C1	110.71 (7)	N—S2—C2	106.04 (7)
01—S1—C1	109.76 (7)	S2—N—CI	114.34 (6)
N—S1—C1	101.40 (7)	S2—N—S1	120.24 (6)
O3—S2—O4	119.72 (7)	CI-N-SI	115.71 (7)
O3—S2—N	105.77 (6)		
O3—S2—N—Cl	-45.65 (9)	O2—S1—N—S2	157.69 (8)
04—S2—N—Cl	-17230 (7)	O1-S1-N-S2	28.64 (10)
C2S2NCI	71.47 (9)	C1-S1-N-S2	-86.94 (9)
O3S2NS1	169.79 (8)	O2-S1-N-Cl	13.59 (9)
O4—S2—N—S1	43.14 (9)	O1-S1-N-CI	-115.46 (8)
C2—S2—N—S1	-73.09 (9)	C1-S1-N-CI	128.96 (8)

Table 2. Hydrogen-bonding geometry (Å, °)

D—H···A	D—H	$\mathbf{H} \cdot \cdot \cdot \mathbf{A}$	$D \cdots A$	D — $H \cdot \cdot \cdot A$
C1—H1A···O4 ⁱ	0.98	2.45	3.208 (2)	134
$C1 - H1B \cdot \cdot \cdot O2^{ii}$	0.98	2.69	3.628 (2)	161
C1-H1C···O3 ⁱⁱⁱ	0.98	2.39	3.316 (2)	157
C2—H2A···O2 ^{iv}	0.98	2.69	3.374 (2)	127
$C2-H2B\cdots O4^{v}$	0.98	2.58	3.417 (2)	144
Symmetry codes: (i) $\frac{1}{2} - x, \frac{1}{2}$	$+ y, \frac{1}{2} - z;$	(ii) $\frac{1}{2} - x, y$	$-\frac{1}{2}, \frac{1}{2} - z;$
(iii) $1 - x, 1 - y, -$	z; (iv) = -x	$x, y = \frac{1}{2}, \frac{1}{2} = \frac{1}{2}$	-z; (v) $1-x,$	1 - y, 1 - z.

Data collection: XSCANS (Fait, 1991). Cell refinement: XS-CANS. Data reduction: XSCANS. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93. Molecular graphics: XP (Siemens, 1994b). Software used to prepare material for publication: SHELXL93.

We thank the Fonds der Chemischen Industrie for financial support and Mr A. Weinkauf for technical assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1321). Services for accessing these data are described at the back of the journal.

References

© 1997 International Union of Crystallography Printed in Great Britain – all rights reserved Blaschette, A., Näveke, M. & Jones, P. G. (1991). Z. Naturforsch. Teil B, 46, 5-14.

Blom, R. & Haaland, A. (1985). J. Mol. Struct. 128, 21-27.

- Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
- Brown, R. N. (1961). Acta Cryst. 14, 711-715.

Desiraju, G. R. (1996). Acc. Chem. Res. 29, 441-449.

Fait, J. (1991). XSCANS User's Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Ghassemzadeh, M., Harms, K., Dehnicke, K. & Magull, J. (1994). Z. Naturforsch. Teil B, 49, 506-512.

- Hartl, H., Schöner, J., Jander, J. & Schulz, W. (1975). Z. Anorg. Allg. Chem. 413, 61–71.
- Jabay, O., Pritzkow, H. & Jander, J. (1977). Z. Naturforsch. Teil B, 32, 1416-1420.
- Koch, D. & Blaschette, A. (1979). Z. Anorg. Allg. Chem. 454, 5-10.
- Lal, G. S., Pez, G. P. & Syvret, R. G. (1996). Chem. Rev. 96, 1737– 1755.
- Linoh, K., Nagel, K.-H., Lange, I., Moers, O., Blaschette, A. & Jones, P. G. (1997). Z. Anorg. Allg. Chem. In the press.
- Minkwitz, R., Garzarek, P., Neikes, F., Kornath, A. & Preut, H. (1997). Z. Anorg. Allg. Chem. 623, 333-339.
- Padmanabhan, K., Paul, I. C. & Curtin, D. Y. (1990). Acta Cryst. C46, 88-92.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994a). XEMP. Empirical Absorption Correction Program. Version 2.10b. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1994b). XP. Molecular Graphics Program. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1997). C53, 1307-1310

2,13-Dithia[3]metacyclo[3](2,3)naphthalenophane and 2,13-Dithia[3]metacyclo[3](1,7)naphthalenophane†

PETER G. JONES^a AND PIOTR KUŚ^b

^aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ^bDepartment of Chemistry, Silesian University, 9 Szkolna Street, 40-006 Katowice, Poland. E-mail: jones@xray36.anchem.nat.tu-bs.de

(Received 30 January 1997; accepted 10 March 1997)

Abstract

The title compounds are isomeric, $C_{20}H_{18}S_2$. The (2,3) isomer has an *anti* conformation, parallel ring systems and approximate mirror symmetry. The (1,7) isomer has

Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.

 $[\]dagger$ Alternative names: 3,16-dithiatetracyclo[16.3.1.0^{5,14}.0^{7,12}]docosane-1(22),5,7(12),8,10,13,18,20-octaene and 3,11-dithiatetracyclo[11.-6.2.1^{5,9}.0^{17,21}]docosane-1(20),5(22),6,8,13,15,17(21),18-octaene.

perpendicular ring systems and the bridge conformations reflect the inherent asymmetry of the substitution pattern.

Comment

We are interested in the structures of dithianaphthalenophanes and have most recently reported the structure of 2,13-dithia[3]orthocyclo[3](2,3)-naphthalenophane (Jones & Kuś, 1997; further related references are presented therein). In the *meta* series, we have reported the structure of 17-methyl-2,13-dithia[3]metacyclo[3](2,3)naphthalenophane (Jones, Hopf & Kuś, 1996a). We publish here the structures of the isomeric compounds 2,13-dithia[3]metacyclo[3](2,3)naphthalenophane, (1), and 2,13-dithia[3]metacyclo[3](1,7)naphthalenophane, (2).

In the (2,3) isomer, (1) (Fig. 1), the ring systems are approximately parallel [interplanar angle $12.59(7)^{\circ}$] and adopt the anti conformation, as observed in the 17methyl derivative (Jones et al., 1996a). The perpendicular distance between the ring planes (as given by the distances of atoms C15-C20 from the naphthalene best plane) varies from 2.8 to 3.4 Å. Surprisingly, the corresponding benzene phane, 2,11-dithia[3.3]orthometacyclophane, adopts a syn conformation in the crystal (Bodwell et al., 1990). Dimensions of the central tenmembered ring of (1) are presented in Table 1; starting with C1-S2-C3-C4 and moving to increasing atom number, the torsion angle sequence is -ac, +ac, sp, -sc, +sc, -sc, +ap, -ap, -ac. The molecule, and in particular the bridge geometry, displays mirror symmetry to a good approximation.

Fig. 1. The molecule of the (2,3) isomer, (1), in the crystal. Ellipsoids represent 50% probability levels. H-atom radii are arbitrary.

In the (1,7) isomer, (2) (Fig. 2), the ring systems are approximately orthogonal [interplanar angle $72.36(8)^{\circ}$]. Dimensions of the central 13-membered ring of (1) are presented in Table 2; starting with C1-S2-C3-C4 and moving anticlockwise in the figure, the torsionangle sequence is +ac, -ac, ap, ap, sp, +sc, -ap, +sc, +sc, ap, ap, -ac, -ac. The bridges, in which the corresponding torsion angles necessarily have opposite signs, display similar conformations; the most significant difference of ca 33° is observed for C14-S13-C12-C10 -157.0(2) and C1-S2-C3-C4 124.1(3)°, and compensates for the inherent asymmetry of the (1,7)substitution pattern. As far as we are aware, there are no other reported structures of [3.3]naphthalenophanes with (1,7) substitution; we have determined the (disordered) structure of the corresponding para-(1,6) isomer (Jones, Hopf & Kuś, 1996b).

Fig. 2. The molecule of the (1,7) isomer, (2), in the crystal. Ellipsoids represent 50% probability levels. H-atom radii are arbitrary.

The shortest intramolecular contacts (excluding H atoms) are, for (1), $S2 \cdot \cdot \cdot S2(\frac{3}{2} - x, \frac{3}{2} - y, 1 - z)$ 3.936 (1) and $C7 \cdot \cdot \cdot C8(1 - x, -y, 1 - z)$ 3.462 (2) Å, and for (2), $C6 \cdot \cdot C18(\frac{1}{2} - x, \frac{1}{2} + y, \frac{1}{2} - z)$ 3.461 (5) Å (no $S \cdot \cdot \cdot S$ contacts).

Experimental

The title compounds were prepared by cyclization of 1,3-di-(mercaptomethyl)benzene and 2,3- or 1,7-di(bromomethyl)naphthalene by the well known high-dilution method (Kuś, 1987, 1991) and recrystallized from carbon tetrachloride for (1) or ethanol for (2) by slow evaporation.

Compound (1)

Crystal data

 $C_{20}H_{18}S_2$ $M_r = 322.46$ Monoclinic C2/ca = 19.604 (2) Åb = 9.7659 (12) Åc = 17.8787(18) Å $\beta = 105.524(8)^{\circ}$ V = 3298.1 (6) Å³ Z = 8 $D_x = 1.299 \text{ Mg m}^{-3}$ D_m not measured

Data collection

Siemens P4 diffractometer ω scans Absorption correction: none 4740 measured reflections 3775 independent reflections 2942 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.020$

Refinement

Refinement on F^2 $(\Delta/\sigma)_{\rm max} = -0.001$ $R[F^2 > 2\sigma(F^2)] = 0.035$ $wR(F^2) = 0.098$ S = 1.0253775 reflections 199 parameters H atoms riding: see below $w = 1/[\sigma^2(F_o^2) + (0.0594P)^2]$ + 0.4203P] where $P = (F_0^2 + 2F_c^2)/3$

Table 1. Selected geometric parameters (A, \circ) for (1)

C1C19 C1S2 S2C3 C3C4 C4C11 C11C12	1.501 (2) 1.8310 (18) 1.8093 (15) 1.5204 (19) 1.4347 (19) 1.518 (2)	C12—S13 S13—C14 C14—C15 C15—C20 C19—C20	1.8152 (15) 1.8292 (17) 1.500 (2) 1.394 (2) 1.393 (2)
C19—C1—S2 C3—S2—C1 C4—C3—S2 C11—C4—C3 C4—C11—C12 C11—C12—S13	112.37 (12) 102.68 (7) 117.53 (10) 121.24 (12) 121.37 (13) 116.86 (11)	C12—S13—C14 C15—C14—S13 C20—C15—C14 C20—C19—C1 C19—C20—C15	102.75 (7) 112.62 (11) 118.84 (14) 118.70 (15) 121.96 (14)
C19—C1—S2—C3 C1—S2—C3—C4 S2—C3—C4—C11 C3—C4—C11—C12 C4—C11—C12—S13	-40.99 (14) -61.88 (12) 145.89 (11) 0.1 (2) -141.70 (12)	C11-C12-S13-C14 C12-S13-C14-C15 S13-C14-C15-C20 C1-C19-C20-C15 C14-C15-C20-C19	58.54 (13) 43.56 (13) -99.20 (14) -169.65 (14) 170.85 (14)

Compound (2)

Crystal data	
$C_{20}H_{18}S_2$	Mo $K\alpha$ radiation
$M_r = 322.46$	$\lambda = 0.71073 \text{ Å}$

Mo $K\alpha$ radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 62 reflections $\theta = 3.5 - 12.5^{\circ}$ $\mu = 0.317 \text{ mm}^{-1}$ T = 173(2) K Tablet $0.80 \times 0.60 \times 0.20$ mm Colourless

 $\theta_{\rm max} = 27.5^{\circ}$ $h = -25 \rightarrow 4$ $k = -12 \rightarrow 0$ $l = -22 \rightarrow 22$ 3 standard reflections every 247 reflections intensity decay: none

 $\Delta \rho_{\rm max} = 0.297 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.277 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C) Monoclinic $P2_1/n$ a = 8.846 (2) Å b = 13.178 (3) Å c = 13.876 (3) Å $\beta = 101.28 (2)^{\circ}$ V = 1586.3 (6) Å³ Z = 4 $D_x = 1.350 \text{ Mg m}^{-3}$ D_m not measured Data collection Siemens P4 diffractometer ω scans

Absorption correction: none 3132 measured reflections 2792 independent reflections 1766 reflections with $I > 2\sigma(I)$ $R_{int} = 0.026$

Refinement

Refinement on F^2
$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.051 \\ wR(F^2) &= 0.127 \end{split}$$
S = 0.9212792 reflections 199 parameters H atoms riding: see below $w = 1/[\sigma^2(F_o^2) + (0.0671P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

Cell parameters from 59 reflections $\theta = 4.5 - 11.5^{\circ}$ $\mu = 0.329 \text{ mm}^{-1}$ T = 173 (2) K Plate $0.80 \times 0.25 \times 0.08 \text{ mm}$ Colourless

 $\theta_{\rm max} = 25.0^{\circ}$ $h = 0 \rightarrow 10$ $k = -15 \rightarrow 1$ $l = -16 \rightarrow 16$ 3 standard reflections every 247 reflections intensity decay: none

 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.671 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.379 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)

Table 2. Selected geometric parameters $(\text{\AA}, \circ)$ for (2)

C1-C19	1.509 (5)	C10'-C11	1.395 (5)
C1S2	1.809 (4)	C12S13	1.828 (3)
\$2—C3	1.832 (4)	S13—C14	1.830 (4)
C3—C4	1.493 (5)	C14C15	1.511 (5)
C4-C11	1.390 (5)	C15-C20	1.391 (5)
C10—C10′	1.452 (5)	C19-C20	1.384 (5)
C10-C12	1.487 (5)		
C19—C1—S2	113.9 (2)	C10-C12-S13	109.9 (2)
C1—S2—C3	101.15 (17)	C12-S13-C14	102.02 (16)
C4-C3-S2	114.2 (2)	C15-C14-S13	111.5 (2)
C11-C4-C3	119.9 (3)	C20-C15-C14	120.3 (3)
C10'-C10-C12	121.4 (3)	C20-C19-C1	120.4 (3)
C11—C10′—C10	122.6 (3)	C19—C20—C15	121.9 (3)
C19—C1—S2—C3	-66.4 (3)	C10-C12-S13-C14	-157.0 (2)
C1—S2—C3—C4	124.1 (3)	C12S13C14C15	57.7 (3)
\$2-C3-C4-C11	-72.3 (4)	S13-C14-C15-C20	69.0 (4)
C12-C10-C10'-C11	4.1 (5)	S2-C1-C19-C20	-55.8 (4)
C3-C4-C11-C10'	-177.2 (3)	C1-C19-C20-C15	176.3 (3)
C10-C10'-C11-C4	-179.9 (3)	C14-C15-C20-C19	-173.4 (3)
C10'-C10-C12-S13	77.7 (3)		

In both (1) and (2), H atoms were treated as riding atoms with C—H 0.99 Å for CH₂ groups and 0.95 Å for aromatic CH groups.

For both compounds, data collection: XSCANS (Fait, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structures: SHELXS86 (Sheldrick, 1990); program(s) used to refine structures: SHELXL93 (Sheldrick, 1993); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL93.

We thank the Fonds der Chemischen Industrie for financial support and Mr A. Weinkauf for technical assistance.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1295). Services for accessing these data are described at the back of the journal.

References

- Bodwell, G., Ernst, L., Hopf, H., Jones, P. G., McNally, J. P. & Schomburg, D. (1990). *Chem. Ber.* 123, 2381–2386.
- Fait, J. (1991). XSCANS Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Jones, P. G., Hopf, H. & Kuś, P. (1996a). Z. Kristallogr. 211, 839-840.
- Jones, P. G., Hopf, H. & Kuś, P. (1996b). Z. Kristallogr. 211, 841-842.
- Jones, P. G. & Kuś, P. (1997). Acta Cryst. C53, 786-787.
- Kuś, P. (1987). Pol. J. Chem. 61, 95-98.
- Kuś, P. (1991). Pol. J. Chem. 65, 1633-1640.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1994). XP. Molecular Graphics Program. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Acta Cryst. (1997). C53, 1310-1312

An Unusual Calix[4]arene Derivative Containing Phosphorus with Coordination Numbers 4, 5 and 6

HOLGER THÖNNESSEN,^a PETER G. JONES,^{a*} REINHARD SCHMUTZLER^a AND JÖRG GLOEDE^b

^aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ^bInstitut für Angewandte Chemie eV, Berlin-Adlershof, Rudower Chaussee 5, 12484 Berlin, Germany. E-mail: jones@xray36.anchem.nat.tu-bs.de

(Received 11 March 1997; accepted 25 March 1997)

Abstract

The title compound, chloro[5, 11, 17, 23-tetra-*tert*butyl-28-(tetrachlorophosphoranyloxy)calix [4] arene -25,26,27-trioxy]phosphonium hexachlorophosphate dichloromethane solvate, C₄₄H₅₂Cl₅O₄P₂⁺.PCl₆⁻.CH₂Cl₂, contains pentavalent phosphorus with three different coordination numbers, 4, 5 and 6. The calixarene adopts a non-standard conformation between the partial cone and 1,2-alternate conformations.

Comment

The introduction of phosphorus-containing substituents into calix[4]arene systems *via* oxygen linkages has been achieved during the past few years in a number of ways, some of which we have described (Neda *et al.*, 1995; Gloede, Keitel, Costisella, Kunath & Schneider, 1996, and references therein). The reaction of *p-tert*butylcalix[4]arene, (1), with phosphorus pentachloride was reported (Gloede, Costisella, Ramm & Bienert, 1993; Gloede & Keitel, 1995) to proceed as shown in the scheme, forming an unusual phosphorus-containing derivative, (2), that involves P atoms with coordination numbers 4, 5 and 6; the conformation of the calix[4]arene was, however, not established. (In the scheme the common cone conformation is presented for clarity.)

The proposed structure of (2) was originally based on the ³¹P NMR spectrum in solution, with three δ values of equal intensity at 8.1, -66.0 and -296 p.p.m. These values agree well with the presence of P with coordination numbers 4, 5 and 6 (Gloede *et al.*, 1993; Mark, Dungan, Crutchfield & van Wazer, 1967; Brazier, Lamandé & Wolf, 1991).

Compound (2) was originally reported as being highly deliquescent. This was not confirmed during the studies reported here. After crystallization from CH_2Cl_2 /hexane under absolutely anaerobic conditions, (2) proved to be remarkably stable towards atmospheric moisture. We report here the crystal structure of its dichloro-